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SUMMARY 

25-78 7 
E k p l o r a t o r y t e s t s  were made t o  determine t h e  reduction of heat t r ans fe r  

r e su l t i ng  from eject ion of gases at  the  stagnation point on a hemisphere-cone at  
a nominal Mach number of about 9 and at stagnation enthalpies  up t o  1600 Btu/lb. 
H e l i u m ,  nitrogen, and argon gases were used as coolants. The r a t i o  of mass 
flow of coolant t o  the  mass flow of air  swept out by the  model projected area 
w a s  less than 0.20 i n  a l l  cases. 

The experimental heat- t ransfer  data  were normalized by the  calculated 
stagnation-point values based on t e s t  conditions i n  the  tunnel  and a re  presented 
as a function of t he  surface distance from the stagnation point.  The var ia t ion  
of shock standoff dis tances  with mass flow and volumetric flow of the  gaseous 
e j ec t an t s  i s  presented along with photographs of t h e  luminous flow f i e l d  of t he  

model during t e s t s .  - 
INTRODUCTION 

Cooling by a f l u i d  in jec t ion  i s  a form of mass t r ans fe r  cooling which 
appears promising as a mechanism f o r  heat absorption and blockage during hyper- 
sonic reentry. (For example, see r e f .  1.) I n  addition, the  technique appears 
adaptable f o r  use as a possible solut ion t o  the  communication blackout problem 
during reentry.  
short  periods of time i n  the  v i c i n i t y  of an antenna i n  an attempt t o  quench t h e  
ionized flow near t h e  antenna. A number o f t h e o r e t i c a l  analyses have been made 
i n  order t o  attempt t o  pred ic t  t he  cooling effect iveness  of m a s s  t r ans fe r  
cooling ( f o r  example, r e f s .  1 t o  5 ) ;  however, only a l imited number of experi- 
mental inves t iga t ions  per ta ining t o  f l u i d  inject ion have been conducted. 
(Refs. 6 t o  9 a r e  typ ica l . )  I n  addition t o  t he  spa r s i ty  of experimental work, 
a fu r the r  hindrance t o  t h e  advancement of the current s t a t u s  of the  problem 
l ies  i n  the  f a c t  t h a t  t h e  bulk of the  investigations were m a d e  i n  cold flow 
f a c i l i t i e s .  A t  present,  l i t t l e  i s  known concerning the  app l i cab i l i t y  of these 
data  t o  a body i n  a hot environment. 

I n  this case high r a t e s  of f l u i d  in jec t ion  could be used f o r  



The present tes ts  were made i n  the 900-kilowatt continuous-arc tunnel a t  
t he  Langley Research Center ( r e f .  lo), which has been subsequently modified t o  
higher power, pressure, and Msch number. The purpose of the tes t  program, 
which was exploratory i n  nature,  was t o  measure heat t r ans fe r  and shock stand- 
o f f  distances on a hemisphere-cone with gaseous e jec t ion  cooling a t  the stagna- 
t i o n  point. The model was t e s t ed  a t  a nominal Mach number of 9 and a t  stagna- 
t i o n  enthalpies up t o  1600 Btu/lb. 
coolants . 

H e l i u m ,  nitrogen, and argon were used as 

This report  includes an appendix by Roger B. Stewart of the  Langley 
Research Center, which presents a discussion of t he  stagnation enthalpy deter-  
mination by a sonic throa t  analysis .  

SYMBOLS 

A area,  sq f t  

spec i f ic  heat a t  constant pressure,  Btu/lb-OR 

specif ic  heat a t .  constant volume, Btu/lb-OR 

cP 

CV 

d th roa t  diameter, i n .  

h enthalpy, Btu/lb 

M Mach number 

m mass flow, lb/sec 

P 

r 

S 

T 

t 

U 

pressure, lb/sq f t  

heat-transfer rate, Btu/( sq f t )  (sec) 

gas- constant, 6.853 x 10-2 Btu/lb-% 

nose radius, i n .  

distance along body from stagnation point of hemisphere, i n  

temperature, OR 

model-wall thickness, i n .  

veloci ty ,  f t / s ec  
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c 

V volumetric flow, cu f t / s e c  

X shock standoff distance, in. 

Y r a t i o  of spec i f ic  heats, cp/% 

P density,  lb/cu f t  

7 time, sec 

Subscripts : 

a air  

C coolant 

cold tunnel  operating with a rc  off  

hot 

1 l o c a l  

tunnel  operating with a rc  on 

0 reference conditions (see t ab le  I) 

S st agnat ion-point value 

t t o t a l  

W W a l l  

m free-stream conditions 

1 conditions before shock 

2 conditions after shock , 

Superscript : 

* sonic th roa t  

Tunnel 

The invest igat ion w a s  conducted i n  the 900-kilowatt continuous-arc tunnel 
at t h e  Langley Research Center and is described i n  reference 10. A schematic 
i l l u s t r a t i o n  and a photograph showing t h e  appearance of the  tunnel a r e  presented 
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i n  figure 1. The f a c i l i t y  consisted of an a r c  heater,  a r c  chamber, plenum 
chamber, t h roa t  section, a 5' half-angle conical nozzle, a 3-inch-diameter 
cyl indrical  tes t  section, a s t r a igh t  pipe d i f fuser ,  and a steam ejec tor .  Test 
a i r  w a s  supplied t o  the  a rc  chamber from a storage tank a t  a pressure of 
500 lb/sq in .  
water storage b o t t l e s  which furnished cooling water t o  the  d i f f e ren t  components 
of the tunnel. Typical flow conditions i n  the  tunnel  can be seen i n  table I. 

The high-pressure a i r  system w a s  a l so  used t o  pressurize  the  

A 16 -mi~ ime te r  motion-picture camera was used t o  make a v i sua l  record of 
each t e s t .  These movies were used t o  provide qua l i t a t ive  information of t h e  
flow f i e l d ,  t o  determine the  time of model in jec t ion  in to  t h e  stream, and f o r  
measurements of t he  var ia t ion  i n  the  shock standoff dis tance with coolant 
injections.  

Models 

For th i s  invest igat ion,  a hemisphere-cone-cylinder configuration was 
selected ( f ig .  2) .  
body angle of 9 O ,  and a cy l indr ica l  sect ion diameter of 0.500 inch. 
of the  model was 3.797 inches. 
had t h i n  w a l l s .  The nominal w a l l  thickness w a s  0.020 inch a t  t he  thermocouple 
s ta t ions .  

The model had a nose radius of 0.143 inch, a conical fore- 
The length 

The 347 s t a in l e s s - s t ee l  model w a s  hollow and 

Two models of t h e  configuration were made. 
heat t ransfer  during the  t e s t s  with no-coolant flow, and the  instrumentation 
(thermocouples) f o r  t h i s  model i s  shown i n  figure 2. 
t o  measure heat t r ans fe r  during the  coolant-injection tests. This model had an 
in t e rna l  coolant-flow tube of 0.040-inch inside diameter which exi ted at  the  
stagnation point of the  model. The thermocouple locat ions on t h i s  model were 
ident ica l  t o  the  no-coolant-flow model, with t h e  exception of the  one at t h e  
stagnation point.  

One model w a s  used t o  measure 

The other  m o d e l  w a s  used 

All thermocouples were of No. 30 chromel-alumel wire. The thermocouple 
wires were extended through holes d r i l l e d  i n  the  model surface, twisted 
together, and s i lve r  soldered. The wires were then smoothed and made f lush  
with the  model surface. The thickness of t he  model surface a t  t h e  thermocouple 
locations w a s  measured on the  t e s t  models. 

Tests and T e s t  Procedure 

The tunnel  flow conditions f o r  each t e s t  are presented i n  t a b l e  I. Also 
included i n  the  t a b l e  are t h e  types of coolants used, coolant-injection coef- 
f i c i en t s ,  and the theo re t i ca l  stagnation-point heat- t ransfer  ra tes .  

The da ta  were obtained from tes ts  of two types. F i r s t ,  one model of t h e  
configuration with no-coolant in jec t ion  w a s  used t o  measure heat- t ransfer  r a t e s .  
(See f i g .  2.) 
stagnation point w a s  used t o  determine t h e  heat t r ans fe r  i n  t h e  presence of 
coolant inject ion.  A t yp ica l  t e s t  sequence w a s  a s  follows: 
of the coolant w a s  set, (b) the  a rc  w a s  ign i ted  and tunnel flow conditions were 
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Secondly, t he  model with coolant e jec t ing  through a tube at  t h e  

(a) the  mass flow 



establ ished,  and (c )  t h e  room-temperature, isothermal model w a s  in jected in to  
the  stream. The gaseous coolants were approximately at  room temperature. The 
in j ec t ion  apparatus with the  t e s t  model mounted on it can be seen i n  f igure  3 .  
The apparatus w a s  mounted i n  t h e  tunnel-window cavi ty  and t h i s  apparatus 
in jec ted  the  model i n t o  t e s t  posi t ion (a t  zero angle of a t tack)  i n  approximately 
0.05 second. 
step-function exposure t o  tunnel  flow conditions. 
t h a t  t he  model remained i n  the  stream w a s  3 seconds. During t h i s  time the  
m i l l i v o l t  outputs of t he  thermocouples located on the  model surface were 
recorded on a multichannel oscil lograph as continuous t r a c e s  representing tem- 
perature at  any given time. 
ambient temperature and w a s  recorded before each run. 

The rapid in jec t ion  of t he  model i n t o  the  airstream insured a 
The average length of time 

The thermocouple junction box temperature w a s  a t  

The gaseous coolants e jected at  the  stagnation point of t he  model were 
helium, nitrogen, and argon. 
t l e s ,  passed through a pressure regulator,  and then through a tube-and-ball- 
f l o a t  flowmeter. 
the flowmeter s i ze  w a s  varied t o  give inject ion coef f ic ien t  values t h a t  ranged 
from o t o  0.20. (See eq. ( 3 ) . )  

The coolants were obtained from commercial bot-  

The metering pressure w a s  kept constant at 23 lb/sq i n .  while 

Data Reduction 

The technique used f o r  determining the  enthalpy i n  this invest igat ion w a s  
t he  commonly designated "sonic-throat" method. 
t he  sonic-flow technique was obtained from the following equation f o r  t he  s t a t i c  
enthalpy at  t h e  nozzle throa t :  

The stagnation enthalpy using 

and the  Mollier diagram f o r  equilibrium air. 
given i n  the  append- t o  t h i s  report .  

The development of equation (1) i s  

I n  equation (l), Tt,l i s  t h e  i n l e t  temperature of t he  air  t o  the  tunnel,  
i s  the  stagnation pressure i n  the  a r c  chamber, and rh i s  the  measured P t , l  

mass flow. 

Free-stream conditions and conditions behind the model bow shock were cal-  
culated from the  continuity,  momentum, and energy equation ( r e f .  ll) and the  
Mollier diagram fo r  equilibrium air  (ref. 12)  assuming a one-dimensional isen- 
t rop ic  equilibrium expansion down the  nozzle. Mach numbers were obtained from 
p i t o t  pressure measurements. 

The heat- t ransfer  data  were reduced on the  assumption that heat losses  due 
t o  rad ia t ion  and lateral conduction were negligible.  
the  l o c a l  heat t r ans fe r  i s  determined by using t h e  one-dimensional t r ans i en t  

W i t h  these assumptions, 

' heat-flow equation: 
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To f ind  the time rate of change of temperature 
temperature-time curve w a s  taken a t  a small t i m e  after in jec t ion  i n t o  the  
stream when it was judged t h a t  the  i n i t i a l  t r ans i en t s  had disappeared. A t  t h i s  
time the  enthalpy po ten t i a l  and heat- t ransfer  rates across  the  boundary layer  
were a maximum because t h e  model w a s  s t i l l  near ambient temperature. The spe- 
c i f i c  heat was assumed constant at  0.11 Btu/lb-OR and independent of t e m -  
perature f o r  t he  range of temperatures f o r  which the  data  were evaluated. The 
value of t h e  density p 
and the  thickness t w a s  t h e  measured w a l l  thickness at each thermocouple 
location. The dimensionless heat- t ransfer  parameter q2/qs w a s  defined as t h e  
r a t i o  of measured l o c a l  heat- t ransfer  rate t o  t h e  theo re t i ca l  heat- t ransfer  rate 
a t  t h e  stagnation point calculated from reference 13. It w a s  necessary t o  pre- 
sent the  r e s u l t s  i n  the  dimensionless manner i n  order t o  account f o r  the  var i -  
a t ions  i n  enthalpy tha t  exis ted i n  the  tunnel  fo r  d i f f e ren t  tests.  

dTw/d-r, the  slope of the  

cp 

f o r  347 s t a i n l e s s  steel w a s  taken t o  be 493.5 lb/cu f t ,  

The coolant in jec t ion  r a t e  w a s  expressed as the parameter which i s  
defined as the  r a t i o  of coolant mass in j ec t ion  rate t o  the mass rate of a i r  
swept out by the  projected f r o n t a l  area of t h e  model: 

T h i s  parameter i s  based on calculated free-stream propert ies ,  and the  dimension- 
less heat t r ans fe r  and shock standoff dis tance are presented as a f’unction of 
t h i s  parameter. 

I n  f igure 4-, t yp ica l  photographs of the  model undergoing tes ts  (obtained 
from the  16-mi~imeter  motion pictures)  are shown. 
ductions shown here lack c l a r i t y ,  the  o r ig ina l  f i l m  records revealed more 
d e t a i l s  of the  flow phenomenon. 

Although most of t h e  repro- 
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Accuracy 

The estimated accuracies of the  model and tes t  parameters are given below: 

Mach number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  f O . l  
Wall thickness of model a t  thermocouple s ta t ions ,  in .  . . . . . . . . .  f0.002 
Stagnation enthalpy, Btu/lb . . . . . . . . . . . . . . . . . . . . . .  +loo 
Stagnation pressure, lb/sq in .  . . . . . . . . . . . . . . . . . . . .  f 4  
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RESULTS AND DISCUSSION 

Shock Standoff Distance 

Shock standoff dis tances  measured f romthe  film records of t he  t e s t  are 
shown i n  figures 5 and 6 plot ted,  respectively, against  mass in jec t ion  coef- 
f i c i e n t  and volumetric in jec t ion  r a t i o  f o r  the d i f f e ren t  coolants used. I n  the  
measurements of these dis tances  it w a s  assumed that the  upstream edge of the  
luminous gas cap and t h e  upstream edge of the bow shock were coincident. Fur- 
t h e r ,  i n  order t o  check f o r  o sc i l l a to ry  movements of t h e  shock, several  frames 
from t h e  f i lm records of one tes t  were measured. Results from these measure- 
ments, made on an o p t i c a l  comparator, showed consistent agreement. I n  figure 5,  
the  dependence of the  shock standoff distance on type of coolant and coolant 
i n j ec t ion  rate i s  c l e a r l y  shown. For the  same mass in jec t ion  rate, it i s  seen 
t h a t  a grea te r  shock standoff distance i s  produced by the  l i g h t e r  gas helium, 
as compared t o  the heavier gases nitrogen and argon. On the  other  hand, t h e  
heavier gases produced t h e  grea te r  standoff dis tance f o r  t he  same volumetric 
flow ( f i g .  6) as compared t o  t h a t  of the  l i g h t  gas helium. 
curve f o r  helium contains da ta  from an auxi l iary model which had a nose radius  
of 0.109 inch.) 
obtained f o r  zero in jec t ion  i n  this invest igat ion,  good agreement i s  shown when 
t h e  experimental curves of figures 5 and 6 fo r  f i n i t e  in jec t ion  r a t e s  are 
f a i r e d  i n  w i t h  a theo re t i ca l  shock standoff distance taken from reference 14. 
These da t a  showing the var ia t ion  of shock standoff distance with coolant flow 
apply only f o r  the  geometry used i n  this  investigation. Results presented i n  
reference 15 show t h a t  such things as t h e  r a t i o  of model t o  j e t  diameter, the  
jet  Mach number, and t h e  free-stream Mach number can influence the shock stand- 
of f  dis tance and i n  some cases alter the  bow shock shape. 

(Note t h a t  t he  

Although t h e  shock standoff dis tance could not be accurately 

Heat Transfer 

The heat- t ransfer  da ta  obtained on the  model are presented i n  f igu res  7 
and 8 f o r  the  th ree  coolant gases employed i n  the  invest igat ion.  
transfer parameter q2/qs 
l o c a l  heat- t ransfer  r a t e  t o  the  stagnation-point heat-transf e r  r a t e  calculated 
from reference 13. The dashed curve shown i n  f igure  7 gives the  theo re t i ca l  
dimensionless heat- t ransfer  d i s t r ibu t ion  along the  hemisphere-cone surface f o r  
the no-coolant-flow case. The heat-transfer da t a  obtained from the  stagnation- 
point  thermocouple appeared t o  be s igni f icant ly  a f fec ted  by conduction e f f e c t s ,  
and are not shown i n  f igure  7. The heat-transfer rates measured on the  conical  
surface of t he  model (by t h e  thermocouples located a t  
s/r = 3.8965) are  believed t o  be f r e e  of s ignif icant  conduction e f f e c t s  as evi-  
denced by the  reasonable agreement between theory and experiment at  t h i s  loca- 
t i o n  f o r  the  no-coolant-flow case. 
i n j ec t ion  rates of these t e s t s  a reduction t o  one-third'or l e s s  i n  the value 
of q2/qs i s  achieved with t h e  d i f f e ren t  coolants. It i s  indicated i n  f ig -  
ure  7 t h a t  f o r  t h e  lower coolant in jec t ion  rates, the  body heating rates i n i -  
t i a l l y  tend t o  increase with coolant inject ion.  
observed i n  similar tests at lower enthalpy (cold, supersonic t e s t s ,  r e f .  7). 

The heat- 
used i n  t he  figures i s  t h e  r a t i o  of t he  measured 

s/r = 2.999 and 

(See f ig .  7.) FDr the m a x i m u m  coolant 

This phenomenon has been 



Examination of f igure 8 (a  cross p lo t  of f i g .  7) a t  t h e  higher in jec t ion  coef- 
f i c i e n t s  indicates  t h a t  fo r  s/r 
mass flows of nitrogen o r  argon a re  required f o r  a given reduction of heating 
r a t e  than w a s  needed fo r  helium. 

values of less than 4, considerably l a rge r  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, V a . ,  February 12,  1964. 
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APPENDIX 

STAGNATION ENTHALPHY DETERMINATION 

BY A SONIC THROAT ANALYSIS 

By Roger B. Stewart 

The following development leads t o  an expression f o r  the  s t a t i c  enthalpy 
a t  a sonic throa t .  This expression w a s  previously used i n  specif icat ions on an 
a rc  heater  prepared a t  the Ames Research Center, but  as f a r  as i s  known, a d is -  
cussion of the  development and usefulness of the  equation has not yet been 
published. 

Flow proper t ies  have been obtained i n  references 16 and 17 f o r  t he  isen- 
t rop ic ,  equilibrium expansion of high-temperature air. With a knowledge of two 
proper t ies  at sonic conditions the other propert ies  a re  uniquely specified and 

a p l o t  of as a function of % can be m d e  (chart  14 of r e f .  17). I n  

a similar fashion, a s l i g h t l y  d i f fe ren t  p l o t  can be m a d e  of log  as a 

function of l o g  h*. Such a p l o t  i s  shown i n  f igure  9. 

PtA* 
Pt A* 

m 

For t he  stagnation enthalpy range of about 
s t r a igh t  l i n e  f i t  w i l l  give fair agreement t o  computed data.  
i s  taken at  log  h* = 0, the  following equation of t he  form 
wr i t ten  : 

300 2 ht f 8000 Btu/lb, a 
If t h e  in te rcept  

y = mx + b can be 

o r  

so t h a t  

ptA* = 0.4 log h* + 0.876 log p*A*u* 

h* = 0.00645 (-dr*5 



For a cold perfect  gas with 7 = 1.4, Tt1I2 i s  constant, and 
%A* 

1 mcold ( T t  ,cold) A* ''7.' = 0.207 

Pt,cold cold 
L 

Equation (A3)  can be multiplied by 

without changing i t s  value and rewri t ten as: 

(A') 
'cold pt ,hot  

fo2'( p t ,cold A* cold 'hot 
h* = 0.0j12(Tt,c01d 

The sole purpose f o r  introducing t h e  cold-perfect-gas quan t i t i e s  i s  that  
equation (A3) demands a knowledge of the  e f fec t ive  hot-throat area,  
f o r  t he  small th roa t  used i n  the  invest igat ion of t h i s  report  (0.133 inch) it 
seemed unlikely tha t  t he  e f f ec t ive  th roa t  a rea  would be the same as the  geo- 

metric throat  area. Note t h a t  h* and thus  kt a re  functions of (d")'" 
which makes a knowledge of the e f f ec t ive  th roa t  s i ze  a c r i t i c a l  fac tor .  I f  it 

Aiot,  and 

.* 
can be avoided Ahot - = 1, then the  problem of obtaining AEot i s  assumed t h a t  

AEOld 
by use of equation (A5) .  
r e s u l t s  showed that fo r  t he  pa r t i cu la r  tunnel geometry tes ted ,  the  e f f ec t ive  
th roa t  area appeared t o  be equal t o  t h e  geometric t h roa t  area. This w a s  not 
t he  case fo r  the  tunnel geometry used i n  t h e  present invest igat ion.  A recent 
study made with the  a rc  hea ter  exhausting through the  sonic th roa t  i n t o  a water- 
cooled, t o t a l  calorimeter has shown t h a t  f o r  t he  tunnel geometry used i n  the  
present invest igat ion (and a l s o  f o r  several  d i f f e ren t  t h roa t  s i zes ) ,  the  effec-  
t i v e  throat  area i s  not equal t o  the  geometric area. Assuming t h a t  they a r e  
equal produces an e r ro r  i n  stagnation enthalpy determination as high as a fac-  
t o r  of 2. On t h e  other  hand, using equation (A5) and by a carefu l  control  of 
the  throat  Reynolds number between cold and hot running conditions, it should 

be possible t o  obtain a r a t i o  of 

t i o n  would y i e ld  va l id  r e su l t s .  
when t h e  arc is  struck, it i s  n e c e s s a r y t o  operate under cold running condi- 
t i o n s  w i t h  a su f f i c i en t ly  low stagnation pressure so that a minimum change 

I n  some recent work reported i n  reference 18, the  

* 
Ahot - very close t o  uni ty  SO that t h i s  equa- 
G o l d  

Because the  th roa t  Reynolds number decreases 



occurs between the  cold and hot t h roa t  Reynolds numbers. 
s t ab i l i zed  a r c  heater  of this invest igat ion,  t h i s  control  w a s  accomplished by 
operating with the  cold stagnation pressure held t o  a r e l a t ive ly  low value, 
pt,cold 5 110 lb/sq in.  abs. 

For the  magnetically 
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(a) Helium. 

Figure 4.- Effect of inject ion r a t e  on shock standoff distance.  L-64-41? 
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Figure 4.- Continued. 
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Figure h.- Concluded. L-64-417 

21 



I 

I 

I 

X - 
r 

P 
/ 

Model Coo la n t 
0 A u x .  Helium 

Test Helium 
0 Test Nit fog en 
A Test Argon 
D Theory, Ref. 14 

I I I 1 I 
4 8 12 16 20 24x10-2 

mc 
mt3 
- 

Figure 5.- Shock standoff as a function of mass injection. 



I I I I I 
0 .2 .4 .6 .0 1.0 
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(a) Helium coolant. 

Figure 7.- Variation of heating rate with coolant injection. Laminar theory obtained from 
reference 13. Flagged symbols denote check points. 
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(b) Nitrogen coolant. 

Figure 7.- Continued. 
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(c) Argon coolant. 

Figure 7. - Concluded. 
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